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This paper reports an experimental investigation of self-preservation for one- and
two-point statistics in a slightly heated axisymmetric mixing layer. Results indicate
that the longitudinal velocity fluctuation u seems to approach self-preservation more
rapidly than either the transverse velocity fluctuation v or the scalar fluctuation
θ . The Reynolds number Reδ = U0δ/ν (U0 being the jet inlet velocity and δ the
momentum thickness) that ought to be achieved for the one-point statistics to behave
in a self-similar fashion is assessed. Second, the relevance of different sets of similarity
variables for normalizing the energy spectra and structure functions is explored. In
particular, a new set of shear similarity variables, emphasizing the range of scales
influenced by the mean velocity and temperature gradient, is derived and tested.
Since the Reynolds number based on the Taylor microscale increases with respect
to the streamwise distance, complete self-preservation cannot be satisfied; instead,
the range of scales over which spectra and structure functions comply with self-
preservation depends on the particular choice of similarity variables. A similarity
analysis of the two-point transport equation, which features the large scale production
term, is performed and confirms this. Log-similarity, which implicitly accounts for
the variation of the Reynolds number, is also proposed and appears to provide a
reasonable approximation to self-preservation, at least for u and θ . C© 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4890994]

I. INTRODUCTION

The hypothesis of self-preservation which assumes that the flow is governed by a single set of
length, velocity, and scalar scales has been extensively applied for describing the spatio-temporal
evolution of some canonical turbulent flows. Among the literature, this hypothesis has led to sig-
nificant contributions to the study of homogeneous isotropic turbulence (Refs. 1–4 among others)
and to scalar fluctuations evolving in isotropic turbulence (e.g., Refs. 5–9). Self-preservation has
also been applied to homogeneous shear turbulence,10, 11 wake flows,12–17 turbulent jets,13, 18–22 and
turbulent shear-layers.23–27 It is important to stress that the quest for self-preserving solutions has
motivated many aspects of research in turbulence since it has the tremendous advantage of reducing
partial differential equations to ordinary differential equations.

Generally speaking, one-point statistics (mean values, Reynolds stress, etc.) as well as two-point
statistics (e.g., spectra or structure functions) can be studied under the constraints imposed by self-
preservation. When applied to two-point statistics, complete self-preservation implicitly suggests
that all scales behave similarly. It is now well known that this requires the Reynolds number Rλ

based on the Taylor microscale λ (to be defined later) and a typical fluctuation u′ to be constant (see,
e.g., Refs. 2–4 and 21). Indeed, the constancy of Rλ ensures that the ratios between the different
length-scales (the integral scale, the Taylor microscale, the Kolmogorov scale) and velocity scales
(for instance, the rms, the Kolmogorov velocity, ...) are also constant.8, 21, 22 In such cases, inner scales
(e.g., the Taylor microscale or the Kolmogorov length-scale) can be used interchangeably with outer
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scales (the integral length-scale, for example) because they all behave similarly. This circumvents
the question of which are the most relevant similarity variables to be used for normalization. The
only flows for which this constraint is respected is the far field of the round jet (at least along the
axis), the far field of a cylinder wake (preliminary results gathered by our group suggest that x/D,
where D is the diameter of the cylinder, needs to exceed a value of about 200 before Rλ is constant),
and the initial period of decay of grid turbulence at an infinitely large Reynolds number. Therefore,
the range of flows complying with self-preservation appears to be very limited especially since the
third flow is unlikely to be realizable.

For turbulent flows for which Rλ varies significantly, complete self-preservation, i.e., self-
similarity of spectra or correlation functions at all scales, cannot be satisfied. Consequently, the
range of scales satisfying self-preservation depends on the particular choice of similarity variables
(see, e.g., Refs. 4, 8, and 9), and it appears that outer variables are relevant for normalizing the
large-scales, while inner variables are likely to be appropriate at small-scales. Therefore, performing
a self-similarity analysis in flows where Rλ varies significantly remains a challenging task.

On the other hand, log-similarity has been subsequently proposed as an alternative to the classical
picture of self-similarity. Log-similarity was first applied to temperature spectra in Rayleigh-Bénard
convection28 and was shown to hold over an impressive range of Rayleigh numbers. Nelkin29 soon
suggested the applicability of such a similarity for fully developed homogeneous isotropic turbulence.
The main theoretical arguments in favour of the plausibility of log-similarity rely on a multifractal
analysis28, 30, 31 and variational approaches of small-scale intermittency.31 Clearly, the relevance of
such approaches when the Reynolds number is only moderate remains somewhat debatable.

The main objective of the present study is to investigate in detail the accuracy with which
self-similarity is satisfied in a heated axisymmetric shear layer. In particular, the focus is on the
approach towards self-preservation for one-point statistics, velocity-temperature correlations as well
as two-point statistics such as spectra and structure functions. Both dynamical and scalar fields are
examined. While the validity of self-preservation in the axisymmetric shear layer does not need
to be further demonstrated, it is of interest to extend the analysis to higher-order statistics (up
to the third-order), previous studies being usually limited to first- and second-order statistics.23–27

Note that the axisymmetric shear layer has been less studied than the plane mixing layer for which
extensive measurements of high-order statistics and small-scale quantities have been performed,
for example, by Refs. 32 and 33. In addition, to the best of our knowledge, extending the study of
self-preservation to two-point statistics in the shear layer has not been attempted previously. This
seems quite surprising, given that the shear layer is an archetypal flow, which feels the presence of
a strong shear as well as a persisting organized motion.24 Consequently, this particular flow appears
to be nicely tailored for studying the interactions between different ranges of scales and how they
could reach a possible equilibrium. For example, it is of interest to assess the range of scales directly
influenced by the mean shear and the mean temperature gradient, how they differ in behaviour with
the small-scales and which quantities are relevant for normalizing them. Moreover, the Reynolds
number Rλ is known to increase with respect to the streamwise distance. The shear layer is thus
perfectly suited for investigating the departure from complete self-preservation associated with the
spatial variation of Rλ. Further, the relevance of the log-similarity, whose major advantage is to
implicitly account for this variation, can also be assessed.

This paper is organized as follows. The experimental apparatus is first outlined in Sec. II.
Second, the approach towards self-similarity for one-point statistics is investigated in Sec. III. The
analysis is further extended to two-point statistics in Sec. IV. For this purpose, four different sets of
similarity variables are tested both analytically (Sec. IV B) and experimentally (Sec. IV C), notably
the shear similarity variables which are defined in Sec. IV A. Log-similarity is then applied to the
experimental data in Sec. IV D. Conclusions are finally drawn in Sec. V.

II. EXPERIMENTS

Experiments were performed in a mixing layer associated with a slightly heated round jet.
The jet facility has been described in detail, for example, in Refs. 21 and 34. The jet nozzle has
a diameter of D = 55mm, and the jet exit velocity U0 was set to 12.3 m s−1. The corresponding

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.148.197.43 On: Wed, 20 May 2015 04:07:08



075106-3 Thiesset et al. Phys. Fluids 26, 075106 (2014)

(a) (b)

0

0.2

0.4

0.6

0.8

1

1.2

|y − D/2|/δ

U
/
U

0
u

/
U

0

0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

0.06

(c)

0 5 10 15 20
2

4

6

8

10

12

14

U0 [m.s−1]

f
c

[k
H

z]

(d)

FIG. 1. (a) Sketch of the jet facility and coordinate system. (b) Schematic of the hot-cold wire probe used for the present
measurements. (c) Mean velocity (open symbols) and rms profiles (closed symbols) near the jet exit. ◦ present measurements,
� data from Burattini et al.,34 ♦ data from Hussain and Clark,35 ——— Blasius profile. (d) Cut-off frequency of the
cold wire measured using a square wave current injection. ◦ presents measurements with a Pt 0.6 μm wire probe, � presents
measurements with a Pt-10%Rh 0.63 μm wire probe, ♦ data from Lemay and Benaı̈ssa40 with a Pt-10%Rh 0.58μm wire
probe submitted to the current injection test, � data from Fiedler41 using a Pt-10%Rh 0.63 μm wire probe and a chopped
laser beam, � data from Antonia et al.42 using a Pt-10%Rh 0.63 μm wire probe and the pulsed wire technique. ——— and
- - - - correspond to the theoretical expectations for a Pt 0.6 μm and a Pt-10%Rh 0.63 μm wire, respectively, and — · — is
the fit using the functional fc = A1 + A2

√
U0 + A3U0, with A1 = 2.06, A2 = 1.70, and A3 = −0.18.

Reynolds number ReD = U0D/ν is 46 700 (ν is the kinematic viscosity). Some measurements were
carried out in the boundary layer at the jet exit and it was found that the mean velocity was consistent
with a Blasius profile (see Fig. 1(a)). The maximum turbulence level in the boundary layer was
found to be of about 3.5%, i.e., in the range of typical experiments26, 34, 35 (see Fig. 1(c)). The air
at the inlet of the centrifugal blower was heated using an electrical fan heater. The jet facility was
also completely lagged with a glass wool layer covered with a metallic foil overlay to obtain a
more uniform mean temperature profile at the exit. The homogeneity of the temperature profile
at the jet exit was checked using a thermocouple and found to be within 10%. The temperature
excess θ0 ≈ 15◦C on the jet centerline. The ratio Gr/Re2

D (Gr = gD3(θ0 + Ta)/ν2Ta is the Grashof
number with Ta is the ambient absolute temperature and g is the gravity acceleration) was about
3.5 × 10−3 indicating that temperature can be considered as a passive scalar, since buoyancy is
negligible. Simultaneous velocity and temperature measurements were performed at six different
downstream distances from the jet nozzle 1.5 ≤ x/D ≤ 4 and for several transverse positions traversing
the shear layer.

The longitudinal U and transverse V velocity components in the x in y direction respectively
(Fig. 1(a)) were measured using a X-wire probe, consisting a two Wollaston (Pt-10%Rh) wires of
diameter 2.5 μm and typical length of 0.5 mm. The angle between the two wires was chosen to be
about 60◦ in order to capture high velocity angles that may occur in this particular region of the flow
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(see Fig. 1(b)). The lateral separation between the two wires were about 0.5 mm. The hot-wires were
operated by in-house constant temperature anemometer at an overheat ratio of 1.5. The hot-wire
voltages were corrected from temperature variations using36

Ec(t) = Em(t)

(
Tw − Tcal

Tw − T (t)

)1/2

, (1)

where Ec and Em are the corrected and measured voltages, respectively. Tw , Tcal, and T(t) are,
respectively, the wire temperature, the air temperature during calibration, and the air temperature
during measurements. Calibration was made in situ in the potential core of the jet. The look-up
table method37–39 was employed for calibrating the X-wire probe with velocity magnitudes in the
range 0–30 m s−1 with velocity increments of 1 m s−1 and angles in the range ±60◦ with increments
of 10◦.

A Wollaston (Pt) wire of nominal diameter dw = 0.6μm, operated by in-house constant
current circuits, was used for temperature measurements. The current supplied to the wire was
0.1 mA, so that the wire was essentially insensitive to the flow velocity. The wire was etched for a
length lw ≈ 0.6 mm, yielding a ratio lw/dw of about 1000. A square-wave injection technique34, 40

was adopted for the determination of the frequency response of the cold wire. As emphasized in
Fig. 1(d), the Pt-0.6 μm wire was chosen since the cut-off frequency fc was found to be larger
than for a Pt-10%Rh-0.63 μm wire. The instantaneous temperature signal is then corrected
following the method of Ref. 43. The cut-off frequency was first fitted using the functional
fc = 1/2πτw = A1 + A2

√
U0 + A3U0, which allows to compute the instantaneous time constant

τw(t) knowing the instantaneous velocity magnitude
√

U 2(t) + V 2(t). The corrected temperature θ

is then calculated from measured temperature θm following θ = θm + τw(t)∂θm/∂t . The correction
method of Ref. 40 was also tested and led to some very similar corrections for the temperature signal
and related statistics. The cold-wire probe has an angle of 30◦ with the X-wire probe, the latter being
aligned with the jet axis (Fig. 1(b)). The cold-wire is displaced by about 0.7 mm from the hot-wires
in order to avoid interferences (Fig. 1(b)).

The output signals from anemometer channels, operating the cold and hot wires, were passed
through buck-and-gain circuits and low-pass filtered at a frequency fc slightly larger than the Kol-
mogorov frequency fK = U/2πηK (U is the mean velocity and ηK is the Kolmogorov length-scale
to be defined later). The signals were acquired using a National instrument 16 bits A/D converter
at a sampling frequency fs = 2fc. Convergence of velocity and scalar statistics was checked and
found to be satisfactory. The high turbulence level in the shear layer can significantly alter the
reliability of the classical Taylor hypothesis x ≡ Ut . Therefore, for calculating two-point statistics,
a local convection velocity is used in the Taylor hypothesis; for this purpose we followed the same
procedure as outlined in Ref. 21.

III. SELF-PRESERVATION OF ONE-POINT STATISTICS

We first pay particular attention to the approach towards self-preservation for one-point statistics.
At this stage, the relevant scales are the inlet velocity U0 for the velocity field, the temperature
excess θ0 = T(y = 0) − Ta for the temperature field, while the normalized transverse coordinate ξ is
given by

ξ = − y − y0.5

δ
. (2)

y0.5 is the position y where the longitudinal mean velocity U is equal to U0/2 (hereafter, the overbar
denotes time averaged values) and the momentum thickness δ is defined by

δ =
∫ ∞

0

U (y)

U0

(
1 − U (y)

U0

)
dy. (3)
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FIG. 2. Profiles of (a) mean velocities, (b) rms, (c) higher order statistics, as a function of the normalized transverse distance
ξ for different downstream positions. ♦ x = 1.5D, Reδ = 2.8 × 103. � x = 2D, Reδ = 3.7 × 103. � x = 2.5D, Reδ = 4.6 ×
103. � x = 3D, Reδ = 5.5 × 103. ◦ x = 3.5D, Reδ = 6.4 × 103. � x = 4D, Reδ = 7.2 × 103. ——— Hussain and Clark35

and — · — Xu and Antonia.44 (d) Streamwise evolution of the shear layer length-scales δ, δ0.1, and δω together with their
respective linear fit (lines).

Here δ can be used interchangeably with the shear-layer thickness δ0.1 = y0.9 − y0.1 (y0.9 and y0.1 are
the transverse locations where U/U0 is 0.1 and 0.9, respectively) and the vorticity thickness δω,

δω = U0

max
(

∂U
∂y

) (4)

since δ, δ0.1, and δω all behave similarly with the downstream distance x. More precisely, all these
length-scales are known to be proportional to x (e.g., Refs. 24, 26, and 35).

Figs. 2(a)–2(c) present the first-, second-, and third-order statistics of the velocity field nor-
malized by the relevant quantities. A compilation of some published experimental data are also
given to assess the accuracy of the present measurements. While the agreement between the present
measurements and the published data of Refs. 35 and 44 is satisfactory for the mean velocity U/U0,
there are some slight differences as far as second-order statistics are concerned. These discrepancies
may be first attributed to some differences in the initial conditions,26, 27, 44 especially the turbulence
level which is slightly larger than that of Ref. 35. Second, and perhaps to a larger extent, these
departures may be due to the particular probe used for measuring u and v (a 60◦ X-wire probe being
likely to be more adequate than a 45◦ in this region of the flow) and to the calibration method (the
look-up table being more reliable than the yaw-angle method especially in highly turbulent flows39).

It is observed that the longitudinal velocity component reaches a self-similar state rather quickly
and there is a perfect collapse of both U/U0 and u′/U0 (the prime stands for the rms value) for all
the range of measurements 1.5D ≤ x ≤ 4D (only the range of ξ ≤ 3 is considered for analysing
self-similarity since for higher transverse distances, fluctuations in the potential core of the jet
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progressively increase). However, the collapse for the transverse velocity component v is attained
less rapidly, and a distance of x = 3.5D (≡ Reδ = U0δ/ν = 6.4 × 103) has to be reached for v′/U0 to
behave in a self-similar fashion. This remark holds also for the Reynolds stress uv/U 2

0 and higher-
order statistics such as the kinetic energy flux (vu2 + v3)/U 3

0 . Note that some measurements at a
larger distance from the jet nozzle would have been necessary to confirm this since the assessment of
self-similarity relies only on the two profiles at x = 3.5D and 4D. However, the present measurements
seem to indicate that a Reynolds number Reδ = 6.4 × 103 has to be attained for self-preservation
to be satisfied for all velocity components. In Ref. 35, it was observed that v′/U0 was self-similar
beyond x = 0.71D (no measurements were made at smaller distances) corresponding to Reδ ≈ 104

which is consistent with our observation. Noticeable is the fact that the maximum value for both
v′/U0 and uv/U 2

0 progressively decreases before reaching its self-similar value of about 0.14 and
−0.01, respectively. This may be associated with the presence of coherent structures, known as the
Kelvin-Helmholtz vortices,24 whose energetic contribution to v′ and uv decreases as x increases.
This point will be further confirmed when analysing two-point statistics.

The downstream evolution of the shear layer characteristic length-scales δ, δ0.1, and δω is plotted
in Fig. 2(d), together with their respective linear fit. The proportionality between δ, δ0.1, and δω and
the streamwise distance x is well verified for the present measurements. The slope for ∂δ/∂x is equal
to 0.0394 which is slightly larger than the commonly encountered values generally in the range
[0.029–0.037].26, 27 ∂δ0.1/∂x = 0.185 which is comparable with some published values [0.17–0.23]
(Ref. 26 and references therein). ∂δω/∂x = 0.153 in agreement with the data of Brown and Roshko24

[0.145–0.22]. The linearity of δ, δ0.1, and δω with x confirms that they can be used interchangeably
for normalizing the transverse distance y.

We now turn our attention to the scalar field. For convenience, the temperature excess θ relative
to the ambient temperature Ta is considered here, viz., θ = T − Ta. Experimental data for the mean
scalar value θ , and the rms of scalar fluctuations θ ′, the velocity-temperature correlations uθ, vθ and
the temperature flux vθ2, normalized by the appropriate set of similarity variables (the temperature
excess �θ0 = T(y = 0) − Ta and the momentum thickness δ), are given in Figs. 3(a), 3(b), 3(c),
and 3(d), respectively. Even though comparing the plane and axisymmetric shear layer may be
rather misleading, the mean temperature profile we obtain is roughly consistent with that inferred
from Ref. 45. The mean and fluctuating temperature fields (Figs. 3(a) and 3(b)) appear to reach a
self-similar state around x = 3.5D, i.e., at the same position as the transverse velocity component.
The velocity-temperature correlations uθ and vθ (Fig. 3(c)) appear to be of opposite sign and also
attain self-preservation at a streamwise distance of x = 3.5D. The transverse temperature flux, i.e.,
the transport of temperature fluctuations θ2 by the transverse velocity component v is represented in
Fig. 3(d). Here again, the profiles are roughly consistent with self-similarity for downstream distance
x ≥ 3.5D.

In summary, one-point statistics of the velocity components u, v and the scalar field θ reach
a self-preserving state following different approaches. It is observed that statistics of u attain self-
similarity more rapidly than that of v and θ . Arguably, this difference in behaviour is likely to be
attributed to the contribution of the coherent motion which is mostly visible on v and diminishes
with the streamwise distance. This statement can be further confirmed using energy spectra and
structure functions on which we now turn our attention.

IV. SELF-PRESERVATION OF TWO-POINT STATISTICS

Extending the analysis of self-preservation to two-point statistics provides a deeper insight into
the flow details since the evolution of the turbulence structure at a given scale can be assessed. In
the present study, the relevance of four different sets of similarity variables for normalizing energy
spectra and structure functions is tested

� The Kolmogorov variables46 uK = (νε)1/4 and ηK = (ν3/ε)1/4 (ε = 15ν(∂u/∂x)2 is the mean
kinetic energy dissipation rate) for normalizing the velocity spectra and structure functions. For
the temperature field, the Batchelor variables are used θB = √

εθηK /uK and ηB = ηK/Pr (the
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FIG. 3. Profiles of (a) mean scalar values, (b) rms of scalar fluctuations, (c) and (d) velocity-scalar correlations as a function
of the normalized transverse distance ξ for different downstream positions. See Fig. 2(a) for legend. In (a) - - - - corresponds
to the data of Rajagopalan and Antonia45 obtained in the shear layer of a heated plane jet.

Prandtl number Pr = ν/κ with κ the temperature diffusion coefficient and εθ = 3κ(∂θ/∂x)2 is
the scalar dissipation rate).

� The George similarity variables,2 i.e., the velocity variance u2
α (uα stands for either u or v) and

the Taylor microscale λ =
√

15νu2/ε for the velocity field and the temperature variance θ2

and the Corrsin microscale λθ =
√

3κθ2/εθ for the scalar field.
� The outer variables. The term “outer variables” should be understood as macroscopic scales,

for instance, δ is the characteristic length-scale and U0 and θ0 are used for normalizing the
dynamical and scalar field, respectively.

� The shear variables which are defined below.

A. Definition and assessment of the shear characteristic scales

In order to derive the shear characteristic scales, we will consider the simplified case of homo-
geneous shear turbulence. It is important to stress that this hypothesis might not be strictly applicable
to the axisymmetric shear layer since, e.g., the turbulent diffusion term is likely to contribute32 to
the energy budget. However, it is obvious that the production mechanism associated with the mean
shear is a predominant feature of the shear layer, especially at a transverse position ξ = 0 (see
Ref. 32).

Let us first recall the arguments of Ref. 47 that allow to derive the shear length-scale for the
dynamical field. In a turbulent flow dominated by the mean shear, the scale-by-scale budget is given
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by11

6ν
∂(�u)2

∂r
− (�u)3 − 6

r4

∫ r

0
s4�u�vSuds = 4

5
εr. (5)

Here �β = β(x + r) − β(x) is the velocity increment of the quantity β ≡ u, v, θ between two points
separated by a distance r. The first term on LHS of Eq. (5) corresponds to the viscous term and
dominates at rather small scales. The second term is identified as the nonlinear transfer term whose
contribution is mostly perceptible at intermediate scales. The third term corresponds to a production
term through the mean velocity gradient Su = ∂U/∂y and dominates at rather large scales.11, 47

Casciola et al.47 suggested that the shear length-scale Lu
S first defined on dimensional arguments

by Corrsin48 can be identified as the scale for which the production term in Eq. (5) balances the
nonlinear transfer term, i.e.,

Lu
S ≡ r such as (�u)3(r ) = 6

r4

∫ r

0
s4�u�vSuds. (6)

Assuming (�u)3 ∝ εr and �u�v ∝ (εr )2/3 (which strictly hold only at very high Reynolds num-
bers), one obtains

Lu
S =

√
ε

S3
u

. (7)

Then, from the one-point energy budget which features only the production and dissipation terms,
one can write

U 2
S Su ∼ ε, (8)

which leads to a shear characteristic velocity US = √
ε/Su . A similar analysis can be carried out for

the scalar field by first recalling the scale-by-scale budget of (�θ )2 in presence a mean temperature
gradient49

2κ
∂(�θ )2

∂r
− �u(�θ )2 − 2

r2

∫ r

0
s2�v�θ Sθds = 4

3
εθr, (9)

where Sθ = ∂θ/∂y is the mean temperature gradient. Assuming �u(�θ )2 ∝ εθr and δuδθ ∝
(εr )1/3(εθr )1/3(εθ/ε)1/6, and identifying the scale Lθ

S for which the transfer term is equal to the
production term, a shear length-scale for the scalar field can be similarly derived, viz.,

Lθ
S =

√
ε

3/2
θ

ε1/2S3
θ

. (10)

One can further write the one-point budget of the temperature variance in the following form:

USθS Sθ ∼ εθ (11)

yields a shear characteristic temperature θS = εθ/Sθ

√
Su/ε. Lu

S and Lθ
S allow to assess the range of

scales which are in essence influenced by the presence of the mean shear and temperature gradient.47

For r ≥ Lu
S, Lθ

S , statistics of the velocity and scalar fields are dominated by production effects. On
the other hand, the nonlinearity of the cascade mechanism is supposed to be sufficiently strong for
scales smaller than Lβ

S to behave in a universal manner, independently of the large scales.
The shear characteristics scales are plotted in Figs. 4(a) and 4(b). We plot the ratios δ/Lu

S and
δ/Lθ

S since Lu
S and Lθ

S tend to infinity when the mean velocity and temperature gradient goes to
zero. For −4 ≤ ξ ≤ 2, both Lu

S and Lθ
S are proportional to δ (see Fig. 4(a)), indicating that the

shear length-scales are characteristic of rather large scale phenomena and fall into our definition of
outer length-scales. The proportionality of Lu

S and Lθ
S to δ is simply related to the fact that εU 3

0 /δ

and εθU0θ
2
0 /δ behave in a self-similar fashion. The ratios δ/Lu

S and δ/Lθ
S are about 3 at ξ = 0. It

thus appears that Lu
S and Lθ

S are slightly smaller than the shear layer momentum thickness δ. The
characteristic velocity US and temperature θS are also presented in Fig. 4(b). Here again, all curves
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FIG. 4. (a) Profiles of δ/Lu
S and δ/Lθ

S , with the shear length-scales Lu
S ≡ √

ε/S3
u and Lθ

S ≡
√

ε
3/2
θ /ε1/2 S3

θ . (b) Profiles of

U0/US and �0/�S with the shear characteristic velocity US = √
ε/Su and characteristic temperature θS = εθ /Sθ

√
Su/ε.

See Fig. 2(a) for legend.

collapse reasonably well when normalized by U0 and θ0, confirming that the shear characteristic
scales can be identified as outer macro-scales.

B. A priori analysis of self-similarity for two-point statistics

The aim of this section is to analyse a priori the adequacy of the different similarity variables
for normalizing two-point statistics. For this purpose, let us write second- and third-order structure
functions in dimensionless form

(�u)2 = U2(x) f (r/L), (12a)

(�u)3 = U3(x)g(r/L), (12b)

(�u�v) = U2(x)h(r/L). (12c)

Injecting Eqs. (12) into Eq. (5), yields

[2]
f ′

r̃
+ [F1]

g

r̃
+ [F2]

1

r̃5
� = [F3] , (13)

where r̃ = r/L, the prime denotes differentiation with respect to r̃ and � = ∫ r̃
0 s̃4hds̃. The three

functions appearing in Eq. (13) can be expressed as

F1 = ReL = UL
ν

, (14a)

F2 = ReL
SuL
U , (14b)

F3 = 4

5

εL2

νU2
. (14c)

Complete self-similarity implies that all terms within brackets must behave similarly with x.
Since one of them appears to be constant, then F1, F2, and F3 should be also constant. Performing a
similarity analysis without presupposing any particular form forU andL inescapably leads to several
possible solutions depending on the constants F1 to F3 used for deriving them. For example, using
Eqs. (14a) and (14c) leads to the Kolmogorov scales as the relevant length-scales, while the shear
variables emerge from the use of Eqs. (14a) and (14b). However, none of them are suitable in terms
of simultaneously satisfying all three constraints. This indicates that complete self-similarity cannot
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be satisfied in the shear layer. To further describe this, let us assess the range of scales satisfying
self-similarity depending on the particular set of similarity variables that is chosen.

� The Kolmogorov scales ηK and uK. Recalling that in the shear layer ε ∝ x−1, we obtain

F1 = uK ηK

ν
∝ x0, (15a)

F2 = SuηK

uK
∝ x−1/2, (15b)

F3 = 4

5

εη2
K

νu2
K

∝ x0. (15c)

Therefore, Kolmogorov similarity will be satisfied only at small scales for which the production
term can be neglected. Arguably, this could be respected for scales in the range 0 ≤ r � Lu

S .
� George similarity variables λ ∝ x1/2 and u′ ∝ x0,

F1 = u′λ
ν

= Rλ ∝ x1/2, (16a)

F2 = Rλ

Suλ

u′ ∝ x0, (16b)

F3 = 4

5

ελ2

νu′2 ∝ x0, (16c)

which indicates that George similarity is expected to be relevant for both very small and very
large scales. However, some substantial departures from self-similarity are expected in the
intermediate range where g is predominant.

� Outer similarity variables δ ∝ x and U0,

F1 = U0δ

ν
∝ x1, (17a)

F2 = U0δ

ν

Suλ

u′ ∝ x1, (17b)

F3 = 4

5

εδ2

νU 2
0

∝ x1. (17c)

The use of outer similarity variable will be relevant for the range of scales over which the
viscous term 2 f ′/r̃ is negligible. This is expected to be respected for scales in the range rc � r
≤ ∞, where rc is the cross-over length-scale between the viscous and inertial range, viz., rc/ηK

≈ 303/4 (see, e.g., Ref. 4).
� Shear variables. Since Lθ

s ∝ δ and US ∝ U0, similar deductions can be drawn for the shear
similarity variables.

An analogous analysis for Eq. (9), which is not reported here for the sake of clarity, leads to
exactly the same conclusions. In summary, depending on the particular choice of similarity variables,
the range of scales which satisfies self-preservation differs. The Kolmogorov variables are expected
to be relevant for small and intermediate scales, departure from self-similarity when using George
variables are likely to be observed at intermediate scales, while outer and shear characteristic scales
are adequate for large and intermediate scales.

C. Similarity of energy spectra and structure functions

We first consider the degree with which energy spectra comply with self-similarity when
normalized by the four different sets of similarity variables presented in Sec. IV B. In Figs. 5(a)–
5(d) are plotted energy spectra at ξ ≈ 0 in the range 1.5D ≤ x ≤ 4D. In Fig. 5(a), a comparison
of present spectra with those of Ref. 33 at Rλ = 330 is given. The agreement at intermediate and
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FIG. 5. Spectra in the range 1.5D ≤ x/D ≤ 4D, normalized by (a) either Kolmogorov (uK, ηK) or Batchelor scales (θB, ηB),
(b) George similarity variables (u2

α , λ), (θ2, λθ ), (c) outer variables δ and either U0 or θ0, (d) shear length-scales (Lu
S , US) or

(Lθ
S , θS). Spectra of v and θ are shifted upwards by a factor of 25 and 252, respectively. The arrows indicate the direction of

increasing x. In (a) square symbols correspond to the spectra measured by Ref. 33 in the plane shear layer.

small scales is almost perfect over two decades thus validating the present assessment of the energy
spectra.

When velocity and temperature spectra are normalized by Kolmogorov and Batchelor scales,
respectively, (Fig. 5(a)), one observes a perfect collapse for the dissipative scales up to the inertial
range (strictly the restricted scaling range notwithstanding the quite low Reynolds number of the
flow). Altogether, self-similarity is satisfied for wavenumbers kηK, B ≥ 2 × 10−2. For wavenumbers
kηK, B < 10−2, there is a systematic increase in the amplitude of the spectra with x. This is explained
by the non-constancy of the Reynolds number based on the Taylor microscale Rλ = u′λ/ν which
increases from about 210 to 300 for 1.5 ≤ x/D ≤ 4 (see, e.g., Refs. 4, 8, and 9). Note also that the
range of wavenumbers over which spectra of u and θ satisfy self-similarity is wider than that of v.
A peak in the v spectra is easily discernible around kηK ∼ 10−2, which progressively diminishes
in amplitude as x increases. At x = 3.5D, the spectrum of v follows closely that at x = 4.0D. The
peak in the v spectrum is a footprint of the organized motion which monotonically shrinks as x
increases. The peak ceases to be discernible for x ≥ 3.5D. Arguably, the delay in the approach
towards self-preservation for v that was observed for one-point statistics is likely to be due to these
coherent structures and more particularly to the time they need before reaching a quasi-equilibrium
state.

When using the George similarity variables2 (see Fig. 5(b)), the collapse is satisfactory notwith-
standing the slightly larger scatter in the inertial range. For v, a significant departure is also observed
in the dissipative range. This differs from what is generally observed for example in grid4, 8, 9 or wake
turbulence.17 In these flows, it is generally observed than the George similarity2 is satisfied over a
wider range of scales than with the Kolmogorov similarity. Here again, this feature is simply related
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to the Reynolds number Rλ which substantially increases (by a factor 1.5) between x = 1.5D and
x = 4D.

Spectra normalized by the outer similarity variables δ, U0, and θ0 are presented in Fig. 5(c).
In contrast to the Kolmogorov or George similarity variables, the outer scales lead to a satisfactory
collapse for the large-scales, including also a part of the pseudo-inertial range. However, there is a
significant drift towards high wavenumbers as x increases. In addition to the similarity analysis as
provided in Sec. IV B, this feature can be further explained by first recalling the definition of the
normalized dissipation rate Cε ,

ε = Cε

U 3
0

δ
= Cε

A3
I

u′3

δ
. (18)

AI = u′/U0 and Cε were verified to be constant with x (see Figs. 2(b) and 4(a) for AI and Cε ,
respectively). Using Eq. (18), it can be shown that

δ

λ
= Cε

15A3
I

Rλ, (19a)

δ

ηK
= Cε

A3
I

15−3/4 R3/2
λ , (19b)

U 2
0

u2
K

= 1

A2
I

√
15

Rλ. (19c)

Therefore, since Rλ increases, then the ratios δ/λ and δ/ηK increase and hence the normalized spectra
progressively drift towards high wavenumbers. Unsurprisingly, similar deductions can be made when
the shear length-scales are used for normalization (Fig. 5(d)) since Lu

S and Lθ
S are both proportional

to δ.
We now turn our attention to the accuracy of the self-preservation hypothesis for second-order

structure functions (�β)2 (β ≡ u, v, θ ). While spectra and structure functions are simply related by

Eβ(k) = β2

π

∫ ∞

0

(
1 − (�β)2

2β2

)
cos(kr )dr, (20)

their physical interpretation differs. Indeed, spectra strictly represent the energy density at a given
wavenumber, whereas structure functions are more likely to represent a cumulative energy distribu-
tion for scales ≤r ( e.g., Refs. 50–52). Second, Eβ(k) = [m3 s−2], whereas (�β)2 = [m2s−2] which
means that, in addition to a velocity scale, a length scale has to be invoked for normalizing the
spectra which is not the case for structure functions. Therefore, it is of interest to further study the
accuracy with which self-preservation is satisfied in physical space.

Second-order structure functions normalized by the four different sets of similarity variables
are plotted in Figs. 6(a)–6(d). Also included in Fig. 6(a) are the DNS structure functions of u and
θ (Refs. 53, 54) for a plane mixing layer at a similar Reynolds number (Rλ = 250). In the interme-
diate range of scales, some very slight differences are discernible, which may be attributed to the
differences in the initial/boundary conditions. However, the degree of agreement (especially in the
dissipative range) is sufficiently satisfactory to unambiguously support the reliability of the present
measurements. With Kolmogorov or Batchelor scales (Fig. 6(a)), one observes a perfect collapse
for (�β)2 at rather small scales, i.e., from the dissipative range up to the middle of the pseudo-
inertial range. This is absolutely consistent with our theoretical expectations performed in Sec. IV
B. Here again, the range of r over which (�u)2 and (�θ )2 satisfy self-preservation is wider than for
(�v)2. A hint of a bump is discernible in the structure function of v for scales r ≈ 3 × 102,
highlighting the persisting influence of the coherent motion.17, 55, 56 With the George variables
(Fig. 6(b)), in agreement with section Sec. IV B, scatter is observed in the inertial range, espe-
cially for u and θ . As far as the transverse velocity component v is concerned, the departure from
self-similarity surprisingly appears in dissipative range. This is most likely due to a bias when
dividing (�v)2 by v2, the latter being altered by the energy contribution of the coherent motion. As
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FIG. 6. Second-order structure functions in the range 1.5D ≤ x/D ≤ 4D, normalized by (a) either Kolmogorov (uK, ηK) or
Batchelor scales (θB, ηB), (b) George similarity variables (u2

α , λ), (θ2, λθ ), (c) outer variables δ and either U0 or θ0, (d) shear
length-scales (Lu

S , US) or (Lθ
S , θS). Structure function of v and θ are shifted upwards by a factor of 5 and 25, respectively.

The arrows indicate the direction of increasing x. In (a), the symbols correspond to the data of Refs. 53 and 54.

was observed in the energy spectra, the use of either outer-variable (Fig. 6(c)) or shear-variables
(Fig. 6(c)) leads to a reasonable collapse from large down to intermediate scales, whereas in the
dissipative range, the different curves tend to drift towards small-scales when x increases.

In summary, complete self-preservation, i.e., self-similarity of energy spectra and structure func-
tions over the whole range of scales or wavenumbers, appears to be untenable since Rλ significantly
increases with respect to the streamwise distance. As a consequence, the range of scales over which
self-similarity is observed depends on the particular choice of similarity variables. Kolmogorov
variables are suitable for small up to intermediate scales. A significant departure from self-similarity
is observed in the inertial range when using George similarity, whereas outer and shear variables
are equally suitable for normalizing large and intermediate scales. These observations are in perfect
agreement with the theoretical analysis presented in Sec. IV B.

The fact that large and small-scales both satisfy self-similarity with an overlap at intermediate
scales, if normalized by their respective relevant quantities, suggests that complete self-preservation
could be plausible. If such a scaling exists, it would rely on a more sophisticated transformation than
the one arising from a single set of similarity variables. Notably, such a scaling should account for
the relative behaviour of the different similarity variables. Section IV D addresses this issue.

D. Log-similarity of energy spectra and structure functions

The main idea is to use both outer and inner variables in a single representation for energy
spectra and structure functions. In other words, instead of invoking only one set of velocity, length,
and scalar characteristic scales, a new type of normalization could be proposed using two sets
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of similarity variables: one targeting the large-scales, the other the small-scales. Then one should
define an appropriate transformation so that the relative behaviour between outer and inner scales is
accounted for. One solution is a log-type similarity. This type of similarity solution is not new. It has
been first observed and justified for the temperature field in a Rayleigh-Bénard convection flow28

and further investigated in detail for the dynamical field in fully developed homogeneous isotropic
turbulence.29–31

Let us first define two functions f uα

δ and f uα
ηK

such as

f uα

δ =
log

(
C1

(�uα)2

U 2
0

)
log

(
U 2

0

u2
K

) , (21a)

f uα

ηK
=

log
(

C1
(�uα)2

u2
K

)
log

(
U 2

0

u2
K

) . (21b)

Here f uα

δ and f uα
ηK

(uα ≡ u, v) are, respectively, functions of rδ and rηK defined by

rδ = log
(
C2

r
δ

)
log

(
δ

ηK

) , (22a)

rηK =
log

(
C2

r
ηK

)
log

(
δ

ηK

) . (22b)

C1 and C2 are two constants. For the scalar field, similar definitions can be proposed

f θ
δ =

log
(

C1
(�θ)2

�θ2
0

)
log

(
�θ2

0

θ2
B

) , (23a)

f θ
ηB

=
log

(
C1

(�θ)2

θ2
B

)
log

(
�θ2

0

θ2
B

) , (23b)

rδ = log
(
C2

r
δ

)
log

(
δ
ηB

) , (23c)

rηB =
log

(
C2

r
ηB

)
log

(
δ
ηB

) . (23d)

From Eqs. (21a), (21b), (22a), and (22b), it can be shown that

f uα

δ (rδ) = f uα

ηK
(rηK − 1) − 1. (24)

This very general identity holds for any set of similarity variables (as far as they are different) and is
not limited only to (δ, U0) and (ηK, uK). Equation (24) suggests that if f uα

δ (rδ) is self-similar, then so
does f uα

ηK
(rηK ) since they are related by a simple translation. Therefore, this has the major advantage

of circumventing the particular choice of similarity variables that can be made for normalization and
hence, a universal scaling independent of the sets of similarity variables is likely to emerge. Similar
definitions can be proposed for the energy spectra

Euα

δ =
log

(
C1

4π2 Euα

U 2
0 δ

)
log

(
U 2

0 δ

u2
K ηK

) , (25a)
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FIG. 7. Log-similarity for the energy spectra and structure functions. (a) Energy spectra with C1 = 0.25 and C2 = 1, spectra
of v and θ are shifted upwards by factors of 0.2 and 0.4, respectively. (b) structure functions with C1 = 0.25 and C2 = 1,
structure functions of v and θ are shifted upwards by factors of 0.2 and 0.4, respectively.

Euα

ηK
=

log
(

C1
4π2 Euα

u2
K ηK

)
log

(
U 2

0 δ

u2
K ηK

) , (25b)

Eθ
δ =

log
(

C1
4π2 Eθ

�θ2
0 δ

)
log

(
�θ2

0 δ

u2
BηB

) , (25c)

Eθ
ηB

=
log

(
C1

4π2 Eθ

θ2
BηB

)
log

(
�θ2

0 δ

u2
BηB

) , (25d)

which are, respectively, functions of kδ and kηK ,B ,

kδ = log (2πC2kδ)

log
(

δ
ηK ,B

) , (26a)

kηK ,B = log
(
2πC2kηK ,B

)
log

(
δ

ηK ,B

) . (26b)

Similarly, it is straightforward to show that

Euα

δ (kδ) = Euα

ηK
(kηK − 1) − 1. (27)

The prefactor 2π in Eqs. (26a) and (26b) and the factor 4π2 in Eqs. (25a) and (25b) arise from the
definition of the wavenumber and the Fourier Transform, respectively. It is interesting to note that
this log-similarity law is quite similar to the one proposed by Refs. 30 and 31. Indeed, using, e.g.,
Eqs. (19c) and (19c), the expression for the energy spectra can be recast as follows:

Euα

δ ∝
log

(
Euα

E†

)
log

( Rλ

R†

) , (28a)

kδ ∝ log
(

k
k†

)
log

( Rλ

R†

) , (28b)

where E†, R†, and k† are some constants which are introduced here only for convenience. The log-
similarity as given here by Eqs. (21a), (21b), (25a), and (25b) thus appears to be analogous to the
log-similarity law proposed by Refs. 29–31.
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The log-similarity has been tested using the present measurements and the results are presented
in Figs. 7(a) and 7(b). With the exception of v for which, as already mentioned, the coherent motion
contributes significantly to the energy distribution at large scales, the log-similarity law seems to be
satisfied closely over the whole range of scales. Pragmatically speaking, this type of scaling acts as
a compression-dilatation transformation of the spectra (or structure functions) and wavenumbers (or
separations) so that they all fall onto a single curve. As a consequence, the analytical considerations
of Refs. 30 and 31 on the basis of a multifractal analysis, are likely to apply here to theoretically
justify the plausibility of a log-similarity in the axisymmetric mixing layer, albeit the quite low
Reynolds number of the flow. The values for C1 and C2 were empirically assessed and set to 0.25
and 1, respectively. Further investigations are needed to provide a physical interpretation for these
constants and to explore their dependence on the initial conditions, the Reynolds number and the
type of flow.

V. CONCLUSION

Self-preservation for one- and two-point statistics in the slightly heated axisymmetric mixing
layer of a round jet has been investigated by means of hot- and cold-wire anemometry. Special care
has been paid to the reliability of the present measurements for which use was made of (i) a 60◦ X
wire probe, calibrated by a look-up table method, to capture high velocity angles and high turbulence
levels, (ii) a local convection velocity in Taylor’s hypothesis, and (iii) an instantaneous correction
method for the cold-wire time response.

Analysis of one-point statistics reveals that the dynamical and scalar fields follow different
approaches towards self-similarity, the latter being reached more rapidly for u than for v and θ .
Altogether, all these quantities appear to attain a self-preserving state at x = 3.5D corresponding to
a Reynolds number Reδ based on the upstream velocity U0 and the shear layer momentum thickness
δ of 6.4 × 103. It is clear that the approach to similarity of v′/U0 and uv/U 2

0 is delayed relative
to that for u′/U0. This is interpreted as being caused by the footprint of coherent structures whose
contribution is mostly perceptible on v and progressively decreases as x increases. Spectra and
structure functions of v corroborate this interpretation.

Four different sets of similarity variables are tested for normalizing spectra and structure func-
tions. For this purpose, in addition to the scales Lu

S and US which pertain to the dynamical field,
a shear length-scale Lθ

S and characteristic temperature scale θS are introduced on the basis of the
scale-by-scale budget for the second-order temperature structure function. Lu

S and Lθ
S allow the range

of scales which is affected by the presence of the mean velocity and temperature gradient, to be
assessed. They are believed to be relevant quantities for a slightly heated mixing layer. Experimental
data reveal that the shear variables behave as outer variables, i.e., Lu

S and Lθ
S are proportional to

δ, while US and θS scale as U0 and θ0, respectively. This is simply explained by the self-similar
behaviour of the normalized mean energy and scalar dissipation rates.

Since the Reynolds number Rλ increases significantly with the streamwise distance x, complete
self-preservation is not attainable. Instead, the range of scales complying with self-similarity depends
on the particular choice of similarity variables. A similarity analysis of the two-point transport
equation featuring only the production term has been performed and confirms this. Komogorov
variables appear to be suitable at small and intermediate scales, i.e., in the range ηK ,B ≤ r � Lu,θ

S .
George’s similarity variables are adequate for normalizing the very small- and very large-scales but
there are significant departures at intermediate scales where the nonlinear energy transfer dominates.
We noted also a bias, in the context of George’s similarity, associated with the non-negligible
contribution of coherent motion to the velocity variance. On the other hand, outer and shear variables
lead to a satisfactory collapse of spectra and structure functions at large and intermediate scales down
to the cross-over length-scale between viscous and inertial effects.

Log-similarity, which accounts for the variations of Rλ or equivalently the relative behaviour
between outer and inner variables, has been introduced and tested. Instead of using a single set
of length, velocity, or temperature characteristic scales for normalizing two-point statistics, log-
similarity relies on two sets of similarity variables. This has the major advantage of circumventing
the particular choice of the two sets of similarity variables since it was proven that, e.g., fδ(rδ)
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and fηK (rηK ) are related by a simple translation transformation. Results show that log-similarity
applies for all scales with a very high degree of accuracy. This observation opens the door to new
perspectives for using the log-similarity hypothesis in flows where Rλ varies such as grid turbulence
in the initial period, the far field of a plane jet or the intermediate wake region. However, while at
very high Reynolds numbers, the inertial range is sufficiently developed for log-similarity to be an
intuitive or plausible scaling, at low to moderate Reynolds numbers, there should be a limit in terms
of variations of Rλ for the log-similarity to be satisfied. Indeed, variations in curvature of second-
order structure functions (or spectra) in the pseudo-inertial range, which result from variations of
Rλ, are unlikely to be compensated indefinitely by a simple compression-dilatation transformation.
The plausibility of the log-similarity in turbulence should further be demonstrated on a dynamical
basis (i.e., the scale-by-scale budget) rather than on phenomenological arguments using multifractal
models. These issues are left for future work. The two constants C1 and C2 were introduced and
assessed empirically. Further work is also needed to investigate in detail their physical meaning and
their dependence on the Reynolds number, initial conditions, or the type of flow.
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